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Overview

• Bayesian tomographic reconstruction from two views
deformable geometric models with smoothness prior

uncertainty characterized by posterior probability distribution

• Markov Chain Monte Carlo (MCMC) technique
for drawing random samples from probability density
functions

tool for estimating and visualizing uncertainties in models

• Optical tomography
inversion of time-dependent diffusion process

adjoint differentiation of solution to PDEs

• Uncertainties in simulation predictions
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Bayesian approach to model-based analysis

• Models
used to describe and analyze physical world

parameters inferred from data

• Bayesian analysis
uncertainties in parameters described by probability
density functions (pdf)

prior knowledge about situation may be incorporated

quantitatively and logically consistent methodology for
making inferences about models

open-ended approach
• can incorporate new data

• can extend models and choose between alternatives
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Bayesian viewpoint

• Focus on probability distribution functions (pdf)
uncertainties in estimates more important than the estimates
themselves

• Bayes law:  p(a|d) ~ p(a) p(d|a)
where a is parameter vector and d represents data

pdf before experiment, p(a)  (called prior)

modified by pdf describing experiments, p(d|a)  (likelihood)

yields pdf summarizing what is known, p(a|d)  (posterior)

• Experiment should provide decisive information
posterior distribution much narrower than prior
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Bayesian model building

• Steps in model building
choose how to model (represent) object

assign priors to parameters based on what is known
beforehand

for given measurements, determine model with highest
posterior probability (MAP)

assess uncertainties in model parameters

• Higher levels of inference
assess suitability of model to explain data

if necessary, try alternative models and decide among them
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Example - tomographic reconstruction

• Problem - reconstruct object from two projections
2 orthogonal, parallel projections (128 samples in each view)

additive Gaussian noise with rms dev. = 5% of proj. max

Original object
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Likelihood

• Likelihood defined as p(d|a) = probability of data d,
given model and its parameters a

• For measurements subject to additive, independent
Gaussian-distributed noise, minus-log-likelihood is

where di is the ith measurement,
di

*
  is its predicted value (for specific a),

σ is rms noise in measurements

− = = −∑log =[ ( )] ( ) ( )p d di id a a| ϕ χ
σ
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Standard reconstruction approaches

• “Standard” reconstruction algorithms
based on minimizing minus-log-likelihood (�χ2) using
additive or multiplicative updates, non-negativity constraint

do not reproduce original image

Original object
Additive-update
reconstruction

Maximum-entropy
reconstruction
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Model-based Bayesian reconstruction -
make use of prior information

• Assumptions about object
interior density is uniform

abrupt change in density at boundary

boundary is relatively smooth

• Object model chosen to incorporate these assumptions
object boundary - deformable geometric model

boundary smoothness achieved through prior

interior has uniform density (known)

exterior density is zero

only variables are those describing boundary
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Probabilistic interpretation of prior
for deformable boundary model

• Probability of shape:
where κ = boundary curvature

• Sample prior pdf using MCMC
shows variety of shapes deemed admissible before
experiment, capturing our uncertainty about shape

decide on α = 5 on basis of appearance of shapes

Plausible shapes drawn from prior for α = 5

( ) 



− ∫ ds

S 2

2 2
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The Bayes Inference Engine

• Flexible modeling tool developed in DX-3
object described as composite geometric and density model

measurement process (principally radiography)

• User interface via graphically-programmed data-flow
diagram

• Full interactivity through Object-Oriented design

• BIE provides
MAP estimate by optimization

gradient calculated by adjoint differentiation

random samples of posterior by MCMC

uncertainty estimates
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The Bayes Inference Engine

• BIE data-flow diagram to find MAP solution

• Optimizer uses gradients that are efficiently calculated
by adjoint differentiation in code technique(ADICT)

Boundary
description

Input projections

χ 2

2
1

 likelihoodlog =−

( )
ds

S
∫=− 2

2 2
prior  log κα
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MAP reconstruction

• Determine boundary that
maximizes posterior
probability (for α = 5)

• Result not perfect, but very
good for only two
projections

• Question: “How do we
quantify uncertainty in
reconstruction?”

Reconstructed boundary
(gray-scale) compared with

shape of original object (red line)
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Markov Chain Monte Carlo

x2

Probability(x1, x2)
accepted step
rejected step

x1

• Metropolis algorithm:
draw trial step from
symmetric pdf, i.e.,
 t(∆ x) =  t(-∆ x)

accept or reject trial step
on basis of probability at
new position rel. to old

simple and generally
applicable

relies only on calculation
of target pdf for any x

Generates sequence of random samples from an
arbitrary computed probability density function
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Uses of MCMC

• Permits evaluation of expectation values of q(x)
for K samples,   〈 f(x)〉 = ∫ f(x) q(x) dx  ≅ (1/K) Σk  f(xk)

typically used to calculate mean 〈x〉 and variance 〈(x - 〈x〉)2〉
• Useful for evaluating integrals, such as the partition

function for properly normalizing the target pdf

• Dynamic display of sequence as video loop
provides visualization of uncertainties in model and range of
model variations

• Automatic marginalization
when considering any subset of parameters of an MCMC
sequence, the remaining parameters are marginalized over
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MCMC Issues

• Confirmation of convergence to target pdf
is sequence in thermodynamic equilibrium with target pdf?

validity of estimated properties of parameters (covariance)

• Burn in
at beginning of sequence, may need to run MCMC for
awhile to achieve convergence to target pdf

• Use of multiple sequences
different starting values can help confirm convergence

natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
related to efficiency, described above

• Optimization of efficiency of MCMC



17

called hybrid because it alternates Gibbs & Metropolis steps

associate with each parameter xi  a fictitious momentum pi

define a Hamiltonian
     H = ϕ(x) + Σ pi

2/(2 mi) ;   ϕ = -log(q(x)) ;   q(x) = target distr.

construct a new pdf:
     q’(x, p) = exp(- H(x, p)) = q(x) exp(-Σ pi

2/(2 mi))

can easily move long distances in (x, p) space at constant H using
Hamiltonian dynamics; so Metropolis step is very efficient

requires gradient* of ϕ (minus-log-prob)

Gibbs step: draw p from known Gaussian pdf (at fixed x)

efficiency may be better than Metropolis for large dimensions

* adjoint differentiation provides efficient gradient calculation

Hamiltonian hybrid algorithm
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
    red path - Gibbs sample from momentum distribution
    green path - trajectory with constant H, followed by Metropolis
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The Bayes Inference Engine

• BIE data-flow diagram to produce MCMC sequence

• MCMC module implements Metropolis algorithm

Boundary
specification

Image

Boundary
specification

Input projections

χ 2

2
1

 likelihoodlog =−

( )
ds

S
∫=− 2

2 2
prior  log κα

π

MCMC
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Uncertainties in two-view reconstruction

• From MCMC samples from posterior with 150,000
steps, display three selected boundaries

• These represent alternative plausible solutions

compared to MAP estimated
object

compared to original object
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Posterior mean of gray-scale image

Average gray-scale images over
MCMC samples from posterior

Value of pixel is probability it
lies inside object boundary

Amount of blur in edge is
related to magnitude of
uncertainty in edge localization

Posterior mean image
compared to

MAP boundary (red line)
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Credible interval

• 95% credible interval of boundary localization for
two-view reconstruction compared with original
object boundary (red line)

narrower at tangent points

92% of original boundary
lies inside
95% credible interval

• Marginalized measure
of uncertainty -
ignores correlations
among different positions
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Stiffness of posterior related to uncertainty
• Interpret � = - log probability

as potential function; sum of
deformation energy  (prior)

       (likelihood)

• Stiffness of model
proportional to curvature of �

• Displacement obtained by
applying a force to MAP
model and reminimizing �
proportional to force times
covariance matrix
(for Gaussian approximation)

χ 2

2

1

Applying force (white bar) to
MAP boundary (red) moves it to

new location (yellow-dashed)
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 Inversion of complex simulations
• Advanced techniques are required to cope with large data

structures and models with numerous parameters
Optimization

• gradient-based quasi-Newton methods (e.g., CG, BFGS)

• adjoint differentiation for efficient calculation of gradients

• multiscale methods for controlling optimization process

Bayesian methods
• overcome ill posedness of inversion through use of prior knowledge

• Markov chain Monte Carlo to characterize uncertainties

Appropriate higher-order models
• Markov random fields

• deformable geometrical models

• but also consider lowest order, elemental representations
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Simulation of light diffusion in tissue

for assumed distribution of diffusion coefficients (left)

predict time-dependent output at four locations (right)

reconstruction problem - determine image on left
from data on right

1

43

1

4

2
3

2

0.7< D <1.4 cm2ns-1 (µa=0.1 cm-1)

light
pulse in
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Time-dependent finite-difference calculation

• Data-flow diagram shows calculation of time-dependent
measurements by finite-difference simulation

• Calculation marches through time steps ∆t

new state Un+1 depends only on previous state Un

Time-dependent
calculation of

Un= light intensity at
time n
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Adjoint differentiation of forward calculation

• Adjoint differentiation calculation precisely reverses
direction of forward calculation

• Each forward data structure has an associated derivative
Un propagates forward,         goes backward

nU∂
∂ϕ )( 2

2

1 χϕ =
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Reconstruction of simple phantom

• Measurements
section is (6.4cm)2, 0.7 < D < 1.4 cm2ns-1 (µabs = 0.1 cm-1)

4 input pulse locations (middle of each side)

4 detector locations; intensity measured every 50 ps for 1 ns

• Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)

• Prior based on Markov random field with adjustable Lp norm

 p = 1.1 p = 2
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Reconstruction of Infant’s Brain I
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m
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0.35
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1.55
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Reconstruction

(60 iterations ~ 70 min)hematoma (left side) and
cerebrospinal fluid pocket

(upper right)
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Applications of adjoint differentiation

• Imaging through refractive, reflective, diffusive media
seismology, medical and NDE ultrasound, ...

• Sensitivities in large-scale simulations (data assimilation):
atmosphere models (Ron Errico, NCAR; Bob Fovell, UCLA)

fluid dynamics; hydrodynamics (Rudy Henninger)

• Optimization in large engineering design problems:
optical lens systems, geometry of integrated circuits,
aerodynamic shape, engines

• Uncertainty analysis
sensitivity of uncertainty variance to each contributing cause

• Markov Chain Monte Carlo (e.g., Hamiltonian method)
generation of random samples from a prob. dens. function



31

Quantification of uncertainties in
simulation predictions

• Bayesian approach to analyzing single experiments
estimation of model parameters and their uncertainties

• Estimating uncertainties in simulation code
predictions for new situation

• Graphical probabilistic modeling
analysis of numerous experiments in terms of many
physical models

complete uncertainty analysis

check consistency among experiments  (model checking)
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Simulation code

SimulationInitial State
Ψ(0)

Model A
α

Ψ(t)

• Simulation code predicts state of time-evolving system: 
  Ψ(t)  = time-dependent state of system
  Ψ(0) = initial state of system

• Properties of one system component described by physics
model A with parameter vector α (e.g., constitutive relations)
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Comparison of simulation with experiment

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

• Measurement system model transforms the simulated state of the
physical system Ψ(t) into measurements Y* that would be
obtained in the experiment

• Mismatch with data summarized by minus-log-likelihood,
-ln p(Y | Y*) = �χ2

Forward modeling
of experiment
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Parameter estimation - maximum likelihood

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t)
Measurement
System Model Y*(α)

Optimizer

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

• Optimizer adjusts parameters (vector α) to minimize -ln p(Y |Y*(α))

• Result is maximum likelihood estimate for α (also known as minimum-
chi-squared solution)

• Optimization process is accelerated by using gradient-based algorithms
along with adjoint differentiation to calculate gradients of forward model
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Parameter uncertainties via MCMC

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t)
Measurement
System Model

MCMC

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

- ln p(α | Y)

• Markov Chain Monte Carlo (MCMC) algorithm generates a random
sequence of parameters that sample posterior probability of
parameters for given data Y,  p(α | Y), which yields plausible set of
parameters {α}.

• Must include uncertainty in initial state of system, {Ψ(0)}

Y*(α)
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Simulation of plausible predictions -
characterize uncertainty in prediction of new situation

SimulationInitial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

• Generates plausible predictions for known uncertainties in
parameters

{α} = plausible sets of parameter vector α
{Ψ(t)} = plausible sets of dynamic state of system

• Monte Carlo method - run simulation code for each random draw
from pdf for α, p(α |.), to obtain set of predictions {Ψ(t)}

Prediction for
new physical

situation
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Plausible outcomes for many models

SimulationInitial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

Model B
{β}

• Integrated simulation code predicts plausible results for known
uncertainties in initial conditions and material models

{α} = plausible sets of parameter vector α for material A

{β} = plausible sets of parameter vector β for material B

{Ψ(0)} = plausible sets of initial state of system

{Ψ(t)} = plausible sets of dynamic state of system



38

Validation Experiments
Full validation requires hierarchy of experiments

• Basic experiments determine
individual physics models

• Partially integrated experiments
involve combinations of two or
more elemental models

• Fully integrated experiments
require complete set of models
needed to describe final
application of simulation code

C

PDE
Solver

Ψ(t)Ψ(0)

D

BA

PDE
Solver

Ψ(t)Ψ(0)

A

PDE
Solver

Ψ(t)Ψ(0)

BA
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Graphical probabilistic modeling

• Analysis of experimental data Y
improves on prior knowledge about
parameter vector α

• Bayes law:
   p(α | Y) ~ p(Y | α) p(α)
(posterior ~ likelihood x prior)

• Use bubble to represent effect of
analysis based on data Y

• In terms of logs:
- ln p(α | Y) =
- ln p(Y | α) - ln p(α) + constant

• Not the same as a Bayesian network

p(α | Y)
Y α

p(α)

α1

α2

p(α)

p(α | Y)

p(Y | α)
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Graphical probabilistic modeling
Propagate uncertainty through a sequence of analyses

α1

β1

p(α | Y1) p(β)

p(α, β | Y1, Y2)

p(Y2 | α, β )

• First experiment determines
α, with uncertainties given by
p(α | Y1)

• Second experiment not only
determines β but also refines
knowledge of α

• Outcome is joint pdf in α and
β, p(α, β | Y1,Y2) (NB:
correlations)

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β | Y1, Y2)p(α)

p(β)
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Example of analysis of several experiments

Exp. 1 α

Exp. 2 α β

p(α β γ δ | Y1 Y2 Y3 Y4 Y5)
Exp. 3 γ Exp. 5

α β
γ δ

Exp. 4 δ

Output of final analysis is full joint probability for all
parameters based on all experiments

Use of Gaussian pdfs simplifies computations

p(α)

p(γ)

p(β)

p(δ)
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Model checking
Check that model consistent with all experimental data

• Important part of any analysis

• Check consistency of full
posterior wrt. each of its
contributions.

• Example shown at right:
likelihoods from Exps. 1 and 2 are
mutually consistent

however, Exp. 2 is inconsistent with
posterior (dashed) from all exps.

inconsistency must be resolved in
terms of correction to model and/or
interpretation of experiment

α1

α2 1

2
3

4
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Summary

• A methodology has been presented to combine
experimental results from many experiments relevant
to several basic physics models in the context of a
simulation code

• Propose building to implement this approach to
serve as a database of experiments showing links between
analyses

permit logically consistent inferences about models based on
all information

provide a natural way to understand limits to parameter
adjustment to match data from fully integrated experiments
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Summary (cont’d)

• Many challenges remain
systematic experimental uncertainties (effects common to
many data)

identification and resolution of inconsistencies between
experiments and simulation code

inclusion of other sources of uncertainty: material
inhomogeneity, chaotic or turbulent behavior, numerical
computation
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